
Fuzzy Steering for Autonomous MCU-based Mobile Robotics

ROBERT T. CASEY, MIKE HENSLER
Department of Mathematics and Physics

DigiPen Institute of Technology
5001 150th Ave. NE; Redmond, WA 98052

USA
rcasey@digipen.edu, mhensle2@digipen.edu

Abstract: Small-scale autonomous vehicle navigation may involve the use of classical or “crisp” sets for control.
In this paper, we discuss the successful application of fuzzy sets to such a vehicle's steering module, which results
in an improvement in the vehicle's navigational capabilities.

Key-Words: Fuzzy sets, microcontroller, RC car, autonomous navigation, robot.

1 Introduction
Small-scale research with autonomous vehicles begins
with a hardware platform. In our experiment, a
modified RC truck provides the mobile framework,
while a PIC18F452 microcontroller (MCU) serves as
the data, logic, and I/O processing base [1][2]. Lastly,
infrared sensors serve as the vehicle's perceptual link
to its environment [7].

The aforementioned specifications limit the
scope of our experimentation to the Reactive
Paradigm, which has been described as a behavioral,
rather than representative, architecture for robotic
system building [3]. Our chosen architecture
minimizes system memory requirements by
eliminating the robotic localization, environmental
mapping, and planning phases often found in a
representative architecture. No internal
representations of the external world are maintained.
Instead, a tight coupling of sensors to actuators
provides the basic building blocks of robotic actions:
reflex-like behavior. Thus goal-oriented behavior is
minimized: the final vehicle exhibits simple
environmental exploration and obstacle avoidance as
its highest level of behavior.

Once the various idiosyncrasies of hardware
have been adequately addressed, the key challenge
remains: to communicate to the hardware the
instructions to attain autonomous navigation in the
manner previously described.

2 Problem Formulation
Intelligent use of sensor data greatly facilitates
autonomous navigation. However, these input data

span a significant continuous domain. One approach
to managing this complexity involves partitioning the
inputs into three discrete domains: near, mid, and far.
Any input within one of these domains will map to a
singleton - a discrete steering value in the output
range. This is the classical or “crisp” set approach;
each steering output value has a membership of 0 or 1
with respect to each subset of the input domain. In
Table 1, the numeral 1 indicates a member of the
output belongs to a subset of the input, while a 0
indicates non-membership [5].

This “filtering” of sensor input data results in
a loss of information and control: a vehicle utilizing
such logic has trouble negotiating tight corners or
corridors and exhibits somewhat jerky steering.

Classical Characteristic Functions
Steering

Hard Soft None
Range
Near 1 0 0
Mid 0 1 0
Far 0 0 1

Table 1: A simple Boolean mapping
 of inputs (percepts) to outputs (actuators)

3 Problem Solution
Our approach may be seen as a simplified version, in
terms of hardware and software, of recent work by
Valavanis, et al, in an effort to demonstrate the
effectiveness of fuzzy sets on a small-scale
autonomous vehicle [4]. One subset of Valavanis'
experiment involved a fuzzy logic controller mapping

mailto:rcasey@digipen.edu
mailto:mhensle2@digipen.edu

sensor range data to rotational velocities - varying
degrees of turning. Our approach does the same. The
application of fuzzy sets to the vehicle's translational
velocity (speed) extends beyond the scope of this
project.

3.1 Project Goals
Using the linguistic expressiveness of fuzzy sets, we
wish to achieve the following:

1. Preservation of the distinctness of sensor
 data.
2. Continuous or near-analog steering.
3. Improved navigational responsiveness.

3.2 Mathematical Preliminaries
Our approach involves creating a group of
membership functions describing the strength of
sensor readings as well as the degree of turn executed
by the front wheels. The fuzzy sets described by these
membership functions will facilitate translation of the
following linguistic algorithm into a workable
instruction set for our robotic truck:

The farther away an object,
 the less the truck will turn.

The closer an object,
the more the truck will turn.

Consider the following group of membership
functions described by three interleaved triangles:

Fig.1 Geometric Representation of
Four Simple Membership Functions for

Range Input Data

with degrees of membership determined by the
following analytic forms:

m represents the minimum value for sensor input,
while M represents the maximum value.

For the domain:

For the domain :

In our fuzzy relation, we decided to simplify the
translation by using a one-to-one mapping of the input
membership functions to those of the output.
Consider a few sample degrees of membership:

Fuzzy Membership Functions
Steering

Hard Soft None
Range
Near 0.75 0.25 0.00
Mid 0.10 0.80 0.10
Far 0.00 0.25 0.75

Table 2: Sample Degrees of Membership Relating
Range Input Data to Steering Output Data

Compared with Table 1, Table 2 clearly provides
more information and, as we demonstrate, accuracy.

3.3 Translation Process
A high-level view of the translation process marks a
transformation of our sensor input values into unique
or nearly unique steering output values. This process
is as follows:

1. Instruct the PIC18F452 microcontroller's
Analog-to-Digital converter to poll the sensor;
this integral sensor reading represents our
crisp input [6].
2. According to our chosen membership
functions, fuzzify the crisp input to yield a
few floating point degrees of membership;
these represent our fuzzy input.
3. Using our fuzzy relation (one-to-one in
this experiment), map the fuzzy input to the

fuzzy output, which will take the form of
other, possibly similar, floating point degrees
of membership.
4. Reverse step 2 by defuzzifying these
degrees of membership for the fuzzy output to
obtain a discrete integer value. This value
represents our crisp output and the process is
complete.

3.3.1 A Sample Translation
Let us assume that the CPU has polled the front left
and right sensors and obtained values of 37 and 71,
respectively. Our driving logic places higher priority
upon the lateral sensor with the greater value, as
increasing sensor values, in general, correspond to
decreasing separation between vehicle and object.
Thus we will proceed with the data provided by the
right sensor. Hardware calibrations indicate the
universe of discourse for our sensor values:

mx = 15, Mx = 143
{x| mx ≤ x ≤ Mx , x ∈ } (5)

as well as that for our right turning values:
my = 92, My = 152

{y|my ≤ y ≤ My ,y ∈ } (6)
As in (1)-(4), mx,y represents the minimum value and
Mx,y represents the maximum value. Notice that the
domain of x, our discrete sensor input value,
prescribes the membership functions described by (1)
and (2) , since

15 ≤ 71 ≤ 79
Setting up our data as follows:

yields our fuzzy input:
From (1): A1(71) = 0.125 (Far)
From (2): A2(71) = 0.875 (Mid)

Our one-to-one fuzzy relation maps these degrees of
membership (fuzzy input) to the same for the output
functions (fuzzy output). We proceed with the
defuzzification by setting A(x) = A(y) for either (1) or
(2), due to symmetry (notice that the sum of the
results from (1) and (2) will always be 1.0).
Choosing (2):

Solving for y and rounding to the nearest integer, we
obtain y = 118, which represents a steering output

value of turning soft right with a slight inclination
towards the center, roughly 20 degrees right of center.

Fig. 2 illustrates the relation between the
fuzzy sets for the percepts and those for the actuators,
using data from the previous example.

Fig. 2 Mapping Diagram Relating
Sample Range Input to Steering Output

3.4 Engineering Considerations
Given this theoretical foundation, let us now address a
few implementation details concerning hardware
limitations.

3.4.1 Validity and Integrity of Data
Since one of our goals is to preserve the distinctness
of sensor data, measures should be taken to insure the
accuracy and precision of such data before passing it
to our discerning membership functions. A challenge
arises in that the electrical noise from multiple sensors
grouped within a small radius occasionally leads to
interference and inaccurate readings. We want to
maximize the quality of these readings with minimal
computational overhead.

In the end, we decided to take the arithmetic
mean of two readings, which yielded an acceptable
solution. While averaging more data points might
superficially appear to provide even better sensor
calibration, there are drawbacks:

1. The sensors have a listed range of 150
cm [7]. Taking more readings yields smaller
improvements to the overall accuracy.
2. The high native torque of the vehicle
required a cycling of the Pulse-Width-
Modulated speed control. Management of
this speed control involved cycle-sensitive
counters and activation toggles. Taking more
sensor readings per system loop meant taking

more time away from the speed management
loop, resulting in a slower net speed.
Additionally, too much time out of the speed
management loop results in abrupt
acceleration. Neither of these behaviors are
acceptable.
3. While the sensors are taking readings, the
vehicle's position is changing, thus
invalidating the old data points.

After averaging the two sensor readings, the processor
performed a final measure of quality control. If the
reading was greater than the predefined maximum in
domain (5), the data point's value was set equal to that
maximum. If the reading was less than the predefined
minimum in domain (5), the value was set equal to
that minimum. The reasoning behind these
adjustments will soon be clear.

3.4.2 Run-time Considerations
At the time of project implementation, no floating
point library was readily available, making degree of
membership calculations difficult. Even with such a
library, the limited operational frequency, 1 MHz, of
the 8-bit RISC CPU imposed significant limitations
on the design of our control program written in the
Microchip PIC18 assembly language [6]. The
computationally expensive nature of performing
fuzzification and defuzzification for every averaged
sensor reading on such a platform could cripple the
vehicle's navigation. Calculations for membership
functions described by overlapping triangles might be
feasible, but attempting to do the same with logistic
curves or normal distributions would likely exceed the
run-time capabilities of the MCU.

3.4.3 The Lookup Table Solution
Lookup tables proved to be an effective solution to the
run-time calculation challenge. All possible input-to-
output mappings are precomputed using a helper
application (Section 3.5). Once the desired
membership functions and strengths of association
have been entered, the program generates a data file
of tabular values for the translated steering output.
These data files are loaded into the CPU's data
memory for run-time access. As the vehicle obtains
averaged sensor readings at run-time, a quick
subtraction is performed using the minimum sensor
threshold to generate an index into the data table of
steering values. Since this table is simply an array in

data memory, one may now see the logic behind
doing bounds-checking on sensor input data before
using it as a table index. Attempting to read data
outside the array results in undefined behavior.

Given safeguarded indices, lookup tables
provide an efficient means of handling the translation
from fuzzification to defuzzification, with constant
O(k) complexity. Whether the tables contain
mappings generated by membership functions
described by triangles, trapezoids, bell curves, or
sigmoid curves, access time remains constant.

The use of lookup tables also promotes code
modularity. To test the effect of other membership
functions, no core code changes need be made.
Simply regenerating the data files using the FuzzyGUI
and including these new data files within the project
will immediately provide new functionality

The final benefit of lookup table use is the
minimal run-time overhead incurred.

3.5 The FuzzyGUI

Fig. 3 Screenshot of the Fuzzy GUI
Upper Left: Input Membership Functions

Upper Right: Output Membership Functions
Lower Right: A Check on the Composite,

Defuzzified Output

Written in C#, the FuzzyGUI (Fig. 3) utilizes the
cutting edge Microsoft Visual Studio .NET 2005 IDE
with .NET 3.0 Framework CTP and Extreme
Optimization's Mathematics Library [8][9]. Created
as a helper tool for this project, the FuzzyGUI
provides a graphical display of membership functions
to allow for a more concrete grasp as to their meaning.
After we defined the valid input and output ranges,
the application enabled us to define fuzzy sets using

triangular, trapezoidal, sigmoidal, bell, and Gaussian
membership functions (as defined by [10]) over both
domains. With the membership functions in place, we
could then create fuzzy relationships from the input
sets into the output sets. Making use of the built-in
checking functionality, we previewed the behavior of
the mapping by entering test points, at which point the
FuzzyGUI would show us the composite membership
function generated via relations into the output
domain as well as the defuzzified output singleton
using the centroid of area method. As soon as we felt
satisfied with our choice of fuzzy sets and relations,
we entered a filename and the FuzzyGUI
automatically generated a file containing the
precalculated lookup table. This greatly simplified
the task of creating and testing the effects of various
membership functions.

3.6 Findings
The fuzzy relations between sensor input data and
steering output data fulfilled our first project goal
(Sect 3.1) of the preservation of distinctness of sensor
data. This happened at compile-time. At run-time,
compared to the algorithm defined by crisp sets, the
fuzzy algorithm enabled much smoother, near-analog,
steering for the robotic vehicle, thus marking the
achievement of our second project goal. A few
hardware issues involving the steering servos pulled
the vehicle slightly to the left, but these issues were
invariant under software. Several stress tests were
executed in which the vehicle was sent down a tight
corridor of obstacles (Fig. 4). The fuzzy-controlled

 Fig. 4 Diagram of the Track: Stress Test

module yielded more successful passes down the
corridor than the classical set-driven module. In many
instances, the “crisp” version of the vehicle would get

snagged on the ninety-degree corner due to
excessively sharp turning, unlike the vehicle using
fuzzy sets. This navigational improvement completed
our third and final project goal.

What was curious about the results of the
experiment was the perceived “confidence level” of
the vehicle. Anthropomorphically speaking, the truck
seemed more “skittish” with crisp sets, veering
abruptly away from obstacles. With fuzzy sets,
however, the truck seemed to approach these
obstacles aggressively, then smoothly follow their
outline.

4 Conclusion
The success of our modest goals in these simple
experiments has illustrated that, even with the limited
computational resources provided by an 8-bit
microcontroller, the concepts behind fuzzy sets offer a
simple yet effective way to improve significantly the
quality of control over robotic vehicle navigation.

Our triangular membership functions
highlight only the tip of the fuzzy set iceberg. Much
could be done to improve the quality of the
membership functions used for the purposes described
in this paper. First, experiments could examine the
effects of logistic curves and normal distributions.
Next, mappings between sensors and actuators might
more tightly couple input memberships to the
specifications listed on the sensor datasheet, yielding
a better correlation between A/D voltage output
values and physical distance to an object. Finally, the
techniques of knowledge acquisition (KA) or
statistical modeling might help build membership
functions yielding improved navigational
responsiveness [5].

Dedicated hardware performing the fuzzy
translations might ease the computational burdens on
the microcontroller and provide a fruitful field of
experimentation in computer engineering.

 Acknowledgments
 The authors would like to thank Dr. Michael
Aristidou for his mentoring during this project as well
as Dr. Charles Duba for his technical contributions.

 References:
 [1] http://www.traxxas.com/products/electric/rustler
 2006/trx_rustler_intro.htm

http://www.traxxas.com/products/electric/
http://www.traxxas.com/products/electric/

 [2] http://www.microchip.com

 [3] R.R. Murphy, Introduction to AI Robotics, The
MIT Press, 2000.

 [4] K. Valavanis, L. Doitsidis, M. Long, R.R.
Murphy, A Case Study of Fuzzy-Logic-Based Robot
Navigation, IEEE Robotics & Automation Magazine,
Vol. 13, No. 3, 2006, pp. 93-107.

 [5] G. Klir, B. Yuan, Fuzzy Sets and Logic: Theory
and Applications, Prentice Hall PTR, 1995.

 [6] H. Huang, PIC Microcontroller: An Introduction
to Software and Hardware Interfacing, Delmar

Learning, 2005.

 [7] GP2Y0A02YK, Sharp Electronics Corp.,
 web.mit.edu/6.270/www/contestants/handouts/
 acc_ir_dist_001.pdf , 4/05/2006.

 [8] http://msdn.microsoft.com/vstudio/

 [9] http://www.extremeoptimization.com

 [10] J.-S.R. Jang, C.-T.Sun, E. Mizutani, Neuro-
Fuzzy and Soft Computing: A Computational
Approach to Learning and Machine Language,
Prentice Hall, 1997.

http://www.extremeoptimization.com/
http://msdn.microsoft.com/vstudio/

