
Fuzzy Steering for Autonomous MCU-based Mobile Robotics

ROBERT T. CASEY, MIKE HENSLER
Department of Mathematics and Physics

DigiPen Institute of Technology
5001 150th Ave. NE; Redmond, WA  98052

USA
rcasey@digipen.edu, mhensle2@digipen.edu

Abstract:  Small-scale autonomous vehicle navigation may involve the use of classical or “crisp” sets for  control. 
In this paper, we discuss the successful application of fuzzy sets to such a vehicle's steering module, which results 
in an improvement in the vehicle's navigational capabilities.
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1  Introduction
Small-scale research with autonomous vehicles begins 
with  a  hardware  platform.   In  our  experiment,  a 
modified RC truck  provides  the  mobile  framework, 
while a PIC18F452 microcontroller (MCU) serves as 
the data, logic, and I/O processing base [1][2].  Lastly, 
infrared sensors serve as the vehicle's perceptual link 
to its environment [7].

The  aforementioned  specifications  limit  the 
scope  of  our  experimentation  to  the  Reactive 
Paradigm, which has been described as a behavioral, 
rather  than  representative,  architecture  for  robotic 
system  building  [3].   Our  chosen  architecture 
minimizes  system  memory  requirements  by 
eliminating  the  robotic  localization,  environmental 
mapping,  and  planning  phases  often  found  in  a 
representative  architecture.   No  internal 
representations of the external world are maintained. 
Instead,  a  tight  coupling  of  sensors  to  actuators 
provides the basic building blocks of robotic actions: 
reflex-like behavior.  Thus goal-oriented behavior is 
minimized:  the  final  vehicle  exhibits  simple 
environmental exploration and obstacle avoidance as 
its highest level of behavior.

Once the various idiosyncrasies of hardware 
have  been  adequately  addressed,  the  key  challenge 
remains:   to  communicate  to  the  hardware  the 
instructions  to  attain  autonomous  navigation  in  the 
manner previously described.

2  Problem Formulation
Intelligent  use  of  sensor  data  greatly  facilitates 
autonomous  navigation.   However,  these  input  data 

span a significant continuous domain.  One approach 
to managing this complexity involves partitioning the 
inputs into three discrete domains: near, mid, and far. 
Any input within one of these domains will map to a 
singleton  -  a  discrete  steering  value  in  the  output 
range.  This is the classical or “crisp” set approach; 
each steering output value has a membership of 0 or 1 
with respect to each subset of the input domain.  In 
Table  1,  the  numeral  1  indicates  a  member  of  the 
output  belongs  to  a  subset  of  the  input,  while  a  0 
indicates non-membership [5].

This “filtering” of sensor input data results in 
a loss of information and control:  a vehicle utilizing 
such  logic  has  trouble  negotiating  tight  corners  or 
corridors and exhibits somewhat jerky steering.

Classical Characteristic Functions
Steering

Hard Soft None
Range
Near 1 0 0
Mid 0 1 0
Far 0 0 1

Table 1: A simple Boolean mapping
 of inputs (percepts)  to outputs (actuators)

3  Problem Solution
Our approach may be seen as a simplified version, in 
terms of hardware and software,  of recent work by 
Valavanis,  et  al,  in  an  effort  to  demonstrate  the 
effectiveness  of  fuzzy  sets  on  a  small-scale 
autonomous  vehicle  [4].   One  subset  of  Valavanis' 
experiment involved a fuzzy logic controller mapping 
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sensor  range  data  to  rotational  velocities  -  varying 
degrees of turning.  Our approach does the same.  The 
application of fuzzy sets to the vehicle's translational 
velocity  (speed)  extends  beyond  the  scope  of  this 
project.

3.1  Project Goals
Using the linguistic expressiveness of fuzzy sets, we 
wish to achieve the following:

1. Preservation of the distinctness of sensor  
    data.
2. Continuous or near-analog steering.
3. Improved navigational responsiveness.

3.2  Mathematical Preliminaries
Our  approach  involves  creating  a  group  of 
membership  functions  describing  the  strength  of 
sensor readings as well as the degree of turn executed 
by the front wheels.  The fuzzy sets described by these 
membership functions will facilitate translation of the 
following  linguistic  algorithm  into  a  workable 
instruction set for our robotic truck:

The farther away an object,
 the less the truck will turn.

The closer an object,
the more the truck will turn.

Consider  the  following  group  of  membership 
functions described by three interleaved triangles:

Fig.1   Geometric Representation of 
Four Simple Membership Functions for

Range Input Data

with  degrees  of  membership  determined  by  the 
following analytic forms:

m represents  the  minimum  value  for  sensor  input, 
while M represents the maximum value.

For the domain:

For the domain :

In  our  fuzzy  relation,  we  decided  to  simplify  the 
translation by using a one-to-one mapping of the input 
membership  functions  to  those  of  the  output. 
Consider a few sample degrees of membership:

Fuzzy Membership Functions
Steering

Hard Soft None
Range
Near 0.75 0.25 0.00
Mid 0.10 0.80 0.10
Far 0.00 0.25 0.75

Table 2:  Sample Degrees of Membership Relating
Range Input Data to Steering Output Data

Compared  with  Table  1,  Table  2  clearly  provides 
more information and, as we demonstrate, accuracy.

3.3  Translation Process
A high-level view of the translation process marks a 
transformation of our sensor input values into unique 
or nearly unique steering output values.  This process 
is as follows:

1.  Instruct  the PIC18F452 microcontroller's  
Analog-to-Digital converter to poll the sensor; 
this  integral  sensor  reading  represents  our  
crisp input [6].
2.  According  to  our  chosen  membership 
functions,  fuzzify  the  crisp  input  to  yield  a 
few  floating  point  degrees  of  membership; 
these represent our fuzzy input.
3.   Using  our  fuzzy  relation  (one-to-one  in 
this experiment), map the fuzzy input to the 



fuzzy  output,  which  will  take  the  form  of 
other, possibly similar, floating point degrees 
of membership.
4.  Reverse  step  2  by  defuzzifying  these 
degrees of membership for the fuzzy output to 
obtain  a  discrete  integer  value.   This  value 
represents our crisp output and the process is 
complete.

3.3.1   A Sample Translation
Let us assume that the CPU has polled the front left 
and right sensors and obtained values of 37 and 71, 
respectively.  Our driving logic places higher priority 
upon  the  lateral  sensor  with  the  greater  value,  as 
increasing  sensor  values,  in  general,  correspond  to 
decreasing  separation  between  vehicle  and  object. 
Thus we will proceed with the data provided by the 
right  sensor.   Hardware  calibrations  indicate  the 
universe of discourse for our sensor values:

mx = 15, Mx  = 143
{x| mx ≤ x ≤  Mx , x  ∈  }                (5) 

as well as that for our right turning values:
my = 92, My = 152

{y|my ≤  y ≤ My ,y  ∈  }                (6) 
As in (1)-(4),  mx,y represents the minimum value and 
Mx,y represents the maximum value.  Notice that the 
domain  of  x,  our  discrete  sensor  input  value, 
prescribes the membership functions described by (1) 
and (2) , since

15 ≤ 71 ≤ 79
Setting up our data as follows:

yields our fuzzy input: 
From (1): A1(71) = 0.125   (Far)
From (2): A2(71) = 0.875   (Mid)

Our one-to-one fuzzy relation maps these degrees of 
membership (fuzzy input) to the same for the output 
functions  (fuzzy  output).   We  proceed  with  the 
defuzzification by setting A(x) = A(y) for either (1) or 
(2),  due  to  symmetry  (notice  that  the  sum  of  the 
results  from  (1)  and  (2)  will  always  be  1.0). 
Choosing (2): 

Solving for y and rounding to the nearest integer, we 
obtain  y  =  118,  which  represents  a  steering  output 

value  of  turning  soft  right  with  a  slight  inclination 
towards the center, roughly 20 degrees right of center. 

Fig.  2  illustrates  the  relation  between  the 
fuzzy sets for the percepts and those for the actuators, 
using data from the previous example.

Fig. 2  Mapping Diagram Relating
Sample Range Input to Steering Output

3.4  Engineering Considerations
Given this theoretical foundation, let us now address a 
few  implementation  details  concerning  hardware 
limitations.

3.4.1   Validity and Integrity of Data
Since one of our goals is to preserve the distinctness 
of sensor data, measures should be taken to insure the 
accuracy and precision of such data before passing it 
to our discerning membership functions.  A challenge 
arises in that the electrical noise from multiple sensors 
grouped within a small  radius  occasionally  leads  to 
interference  and  inaccurate  readings.   We  want  to 
maximize the quality of these readings with minimal 
computational overhead.

In the end, we decided to take the arithmetic 
mean of  two readings,  which yielded an acceptable 
solution.   While  averaging  more  data  points  might 
superficially  appear  to  provide  even  better  sensor 
calibration, there are drawbacks:

1.  The  sensors  have  a  listed  range  of  150  
cm [7].  Taking more readings yields smaller 
improvements to the overall accuracy.
2.   The  high  native  torque  of  the  vehicle 
required  a  cycling  of  the  Pulse-Width-
Modulated  speed  control.   Management  of 
this  speed  control  involved  cycle-sensitive 
counters and activation toggles.  Taking more 
sensor readings per system loop meant taking 



more time away from the speed management 
loop,  resulting  in  a  slower  net  speed. 
Additionally, too much time out of the speed 
management  loop  results  in  abrupt 
acceleration.  Neither of these behaviors are 
acceptable.
3.  While the sensors are taking readings, the 
vehicle's  position  is  changing,  thus 
invalidating the old data points.

After averaging the two sensor readings, the processor 
performed a final measure of quality control.  If the 
reading was greater than the predefined maximum in 
domain (5), the data point's value was set equal to that 
maximum.  If the reading was less than the predefined 
minimum in domain (5),  the value was set equal to 
that  minimum.   The  reasoning  behind  these 
adjustments will soon be clear.

3.4.2   Run-time Considerations
At  the  time  of  project  implementation,  no  floating 
point library was readily available, making degree of 
membership calculations difficult.  Even with such a 
library, the limited operational frequency, 1 MHz, of 
the  8-bit  RISC CPU imposed significant  limitations 
on the design of our control program written in the 
Microchip  PIC18  assembly  language  [6].   The 
computationally  expensive  nature  of  performing 
fuzzification  and  defuzzification  for  every averaged 
sensor reading on such a platform could cripple the 
vehicle's  navigation.   Calculations  for  membership 
functions described by overlapping triangles might be 
feasible, but attempting to do the same with logistic 
curves or normal distributions would likely exceed the 
run-time capabilities of the MCU.

3.4.3   The Lookup Table Solution
Lookup tables proved to be an effective solution to the 
run-time calculation challenge.  All possible input-to- 
output  mappings  are  precomputed  using  a  helper 
application  (Section  3.5).   Once  the  desired 
membership  functions  and  strengths  of  association 
have been entered, the program generates a data file 
of  tabular  values  for  the  translated  steering  output. 
These  data  files  are  loaded  into  the  CPU's  data 
memory for  run-time access.  As the vehicle obtains 
averaged  sensor  readings  at  run-time,  a  quick 
subtraction  is  performed using the  minimum sensor 
threshold to generate an index into the data table of 
steering values.  Since this table is simply an array in 

data  memory,  one  may  now  see  the  logic  behind 
doing  bounds-checking  on  sensor  input  data  before 
using  it  as  a  table  index.   Attempting  to  read  data 
outside the array results in undefined behavior. 

Given  safeguarded  indices,  lookup  tables 
provide an efficient means of handling the translation 
from  fuzzification  to  defuzzification,  with  constant 
O(k) complexity.   Whether  the  tables  contain 
mappings  generated  by  membership  functions 
described  by  triangles,  trapezoids,  bell  curves,  or 
sigmoid curves, access time remains constant.

The use of lookup tables also promotes code 
modularity.   To test the effect of  other membership 
functions,  no  core  code  changes  need  be  made. 
Simply regenerating the data files using the FuzzyGUI 
and including these new data files within the project 
will immediately provide new functionality

The final  benefit  of  lookup table  use  is  the 
minimal run-time overhead incurred.

3.5  The FuzzyGUI

Fig. 3  Screenshot of the Fuzzy GUI
Upper Left: Input Membership Functions

Upper Right:  Output Membership Functions
Lower Right: A Check on the Composite,

Defuzzified Output

Written  in  C#,  the  FuzzyGUI (Fig.  3)  utilizes  the 
cutting edge Microsoft Visual Studio .NET 2005 IDE 
with  .NET  3.0  Framework  CTP  and  Extreme 
Optimization's  Mathematics Library [8][9].   Created 
as  a  helper  tool  for  this  project,  the  FuzzyGUI 
provides a graphical display of membership functions 
to allow for a more concrete grasp as to their meaning. 
After we defined the valid input  and output  ranges, 
the application enabled us to define fuzzy sets using 



triangular, trapezoidal, sigmoidal, bell, and Gaussian 
membership functions (as defined by [10]) over both 
domains.  With the membership functions in place, we 
could then create fuzzy relationships from the input 
sets into the output sets.  Making use of the built-in 
checking functionality, we  previewed the behavior of 
the mapping by entering test points, at which point the 
FuzzyGUI would show us the composite membership 
function  generated  via  relations  into  the  output 
domain  as  well  as  the  defuzzified  output  singleton 
using the centroid of area method.  As soon as we felt 
satisfied with our choice of fuzzy sets and relations, 
we  entered  a  filename  and  the  FuzzyGUI 
automatically  generated  a  file  containing  the 
precalculated  lookup  table.   This  greatly  simplified 
the task of creating and testing the effects of various 
membership functions.

3.6  Findings
The  fuzzy  relations  between  sensor  input  data  and 
steering  output  data  fulfilled  our  first  project  goal 
(Sect 3.1) of the preservation of distinctness of sensor 
data.  This happened at compile-time.  At run-time, 
compared to the algorithm defined by crisp sets, the 
fuzzy algorithm enabled much smoother, near-analog, 
steering  for  the  robotic  vehicle,  thus  marking  the 
achievement  of  our  second  project  goal.   A  few 
hardware issues involving the steering servos pulled 
the vehicle slightly to the left, but these issues were 
invariant  under  software.   Several  stress  tests  were 
executed in which the vehicle was sent down a tight 
corridor of  obstacles (Fig. 4).  The fuzzy-controlled 

             Fig. 4  Diagram of the Track:  Stress Test

module  yielded  more  successful  passes  down  the 
corridor than the classical set-driven module.  In many 
instances, the “crisp” version of the vehicle would get 

snagged  on  the  ninety-degree  corner  due  to 
excessively  sharp  turning,  unlike  the  vehicle  using 
fuzzy sets.  This navigational improvement completed 
our third and final project goal.  

What  was  curious  about  the  results  of  the 
experiment was the perceived “confidence level” of 
the vehicle.  Anthropomorphically speaking, the truck 
seemed  more  “skittish”  with  crisp  sets,  veering 
abruptly  away  from  obstacles.   With  fuzzy  sets, 
however,  the  truck  seemed  to  approach  these 
obstacles  aggressively,  then  smoothly  follow  their 
outline.

4  Conclusion
The  success  of  our  modest  goals  in  these  simple 
experiments has illustrated that, even with the limited 
computational  resources  provided  by  an  8-bit 
microcontroller, the concepts behind fuzzy sets offer a 
simple yet effective way to improve significantly the 
quality of control over robotic vehicle navigation.  

Our  triangular  membership  functions 
highlight only the tip of the fuzzy set iceberg.  Much 
could  be  done  to  improve  the  quality  of  the 
membership functions used for the purposes described 
in this paper.   First, experiments could examine the 
effects  of  logistic  curves  and  normal  distributions. 
Next,   mappings between sensors and actuators might 
more  tightly  couple  input  memberships  to  the 
specifications listed on the sensor datasheet, yielding 
a  better  correlation  between  A/D  voltage  output 
values  and physical distance to an object.  Finally, the 
techniques  of  knowledge  acquisition  (KA)  or 
statistical  modeling  might  help  build  membership 
functions  yielding  improved  navigational 
responsiveness [5].  

Dedicated  hardware  performing   the  fuzzy 
translations might ease the computational burdens on 
the  microcontroller  and  provide  a  fruitful  field  of 
experimentation in computer engineering.
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